Adaptive Stream Clustering Using Incremental Graph Maintenance

نویسندگان

  • Marwan Hassani
  • Pascal Spaus
  • Alfredo Cuzzocrea
  • Thomas Seidl
چکیده

Challenges for clustering streaming data are getting continuously more sophisticated. This trend is driven by the the emerging requirements of the application where those algorithms are used and the properties of the stream itself. Some of these properties are the continuous data arrival, the time-critical processing of objects, the evolution of the data streams, the presence of outliers and the varying densities of the data. Due to the fact that the stream evolves continuously in the process of its existence, it is crucial that the algorithm autonomously detects clusters of arbitrary shape, with different densities, and varying number of clusters. Recently, the first hierarchical density-based stream clustering algorithm based on cluster stability, called HASTREAM, was proposed. Although the algorithm was able to meet the above mentioned requirements, it inherited the main drawback of density-based hierarchical clustering algorithms, namely the efficiency issues. In this paper we propose I-HASTREAM, a first density-based hierarchical clustering algorithm that has considerably less computational time than HASTREAM. Our proposed method utilizes and introduces techniques from the graph theory domain to devise an incremental update of the underlying model instead of repeatedly performing the expensive calculations of the huge graph. Specifically the Prim’s algorithm for constructing the minimal spanning tree is adopted by introducing novel, incremental maintenance of the tree by vertex and edge insertion and deletion. The extensive experimental evaluation study on real world datasets shows that I-HASTREAM is considerably faster than a state-of-the-art hierarchical density-based stream clustering approach while delivering almost the same clustering quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering

Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.

متن کامل

An Incremental Text Segmentation by Clustering Cohesion

This paper describes a new method, called IClustSeg, for linear text segmentation by topic using an incremental overlapped clustering algorithm. Incremental algorithms are able to process new objects as they are added to the collection and, according to the changes, to update the results using previous information. In our approach, we maintain a structure to get an incremental overlapped cluste...

متن کامل

A Survey Paper on Data Clustering using Incremental Affine Propagation

Clustering domain is vital part of data mining domain and widely used in different applications. In this project we are focusing on affinity propagation (AP) clustering which is presented recently to overcome many clustering problems in different clustering applications. Many clustering applications are based on static data. AP clustering approach is supporting only static data applications, he...

متن کامل

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

Streaming Data Clustering using Incremental Affine Propagation Clustering Approach

Clustering domain is vital part of data mining domain and widely used in different applications. In this project we are focusing on affinity propagation (AP) clustering which is presented recently to overcome many clustering problems in different clustering applications. Many clustering applications are based on static data. AP clustering approach is supporting only static data applications, he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015